

Welcome to PyDio’s documentation!

[image: _images/PyDio.svg]
 [https://pypi.org/project/PyDio/][image: _images/PyDio1.svg]
 [https://pypi.org/project/PyDio/][image: _images/PyDio2.svg]
 [https://pypi.org/project/PyDio/][image: _images/badge.svg]
 [https://codecov.io/gl/zef1r/pydio]
About PyDio

PyDio is a dependency injection library for Python.

It aims to be simple, yet still powerful, allowing you to feed dependencies
inside your application in a flexible way. PyDio design is based on simple
assumption, that dependency injection can be achieved using simple
key-to-function map, where key specifies type of object you want
to inject and function is a factory function that creates
instances of that type.

In PyDio, this is implemented using providers and injectors. You use
providers to configure your key-to-function mapping, and then you use
injectors to perform a lookup of a specific key and creation of the final
object.

Here’s a simple example:

import abc

from pydio.api import Provider, Injector

provider = Provider()

@provider.provides('greet')
def make_greet():
 return 'Hello, world!'

def main():
 injector = Injector(provider)
 greet_message = injector.inject('greet')
 print(greet_message)

And if you now call main() function, then the output will be following:

Hello, world!

Key features

	Support for any hashable keys: class objects, strings, ints etc.

	Support for any type of object factories: function, coroutine, generator,
asynchronous generator.

	Automatic resource management via generator-based factories
(similar to pytest’s fixtures)

	Multiple environment support: testing, development, production etc.

	Limiting created object’s lifetime to user-defined scopes: global,
application, use-case etc.

	No singletons used, so there is no global state…

	…but you still can create global injector on your own if you need it :-)

User’s Guide

	Installation

	Quickstart
	Introduction

	Application’s business logic

	Application’s API

	Adding another environment

	Introducing providers

	Introducing injectors

	Using nested injections

	Using scopes

	Using generator-based object factories

	Using multiple providers

	API Reference
	pydio.api - All core classes in one place
	Injector

	Provider

	Variant

	pydio.base - Interface definitions
	IFactory

	IInjector

	IUnboundFactory

	IUnboundFactoryRegistry

	pydio.exc - Base exceptions
	Base

	InjectorError

	ProviderError

	pydio.injector - Dependency injector
	Injector

	pydio.keys - Key wrappers for special purposes
	Variant

	pydio.provider - Object factory provider
	Provider

	Changelog
	0.1.0 (2021-02-15)

	0.1.0rc4 (2021-02-10)

	0.1.0rc3 (2021-02-04)

	0.1.0rc2 (2021-02-04)

	0.1.0rc1 (2021-02-04)

	License

Installation

You can install PyDio using one of following methods:

	From PyPI (for stable releases):

$ pip install PyDio

	From test PyPI (for stable and development releases):

$ pip install -i https://test.pypi.org/simple/ PyDio

	Directly from source code repository (for all releases):

$ pip install git+https://gitlab.com/zef1r/PyDio.git@[branch-or-tag]

Quickstart

Introduction

In this quickstart guide, we are going to write a simple TODO application
that allows:

	creating items,

	listing items,

	marking items as completed,

	deleting items

Application’s business logic

First, we need a data class to represent our todo items. Let’s then start by
creating a TodoItem entity:

import uuid
from datetime import datetime

class TodoItem:
 uid: uuid.UUID
 created: datetime
 title: str
 description: str
 done: bool = False

Now we need some kind of storage where our todo items will be stored. We will
do this formally, by designing interface. Of course we don’t need it (it’s a
Python), but interfaces are pretty useful with annotations. Here’s our TODO
item storage interface:

import abc
from typing import Iterable, Optional

class ITodoItemStorage(abc.ABC):

 @abc.abstractmethod
 def create(self, item: TodoItem):
 pass

 @abc.abstractmethod
 def save(self, item: TodoItem):
 pass

 @abc.abstractmethod
 def get(self, item_uuid: uuid.UUID) -> Optional[TodoItem]:
 pass

 @abc.abstractmethod
 def delete(self, item_uuid: uuid.UUID):
 pass

 @abc.abstractmethod
 def list(self) -> Iterable[TodoItem]:
 pass

Finally, let’s write our use case classes:

class CreateTodo:

 def __init__(self, todo_storage: ITodoItemStorage):
 self._todo_storage = todo_storage

 def invoke(self, title, description):
 item = TodoItem()
 item.uuid = uuid.uuid4()
 item.created = datetime.now()
 item.title = title
 item.description = description
 item.done = False
 self._todo_storage.create(item)

class ListTodos:

 def __init__(self, todo_storage: ITodoItemStorage):
 self._todo_storage = todo_storage

 def invoke(self):
 for item in self._todo_storage.list():
 yield { # we don't want to expose our entity
 'uuid': item.uuid,
 'created': item.created,
 'title': item.title,
 'description': item.description,
 'done': item.done
 }

class CompleteTodo:

 def __init__(self, todo_storage: ITodoItemStorage):
 self._todo_storage = todo_storage

 def invoke(self, item_uuid: uuid.UUID):
 item = self._todo_storage.get(item_uuid)
 if item is None:
 raise ValueError("invalid item uuid: {}".format(item_uuid))
 item.done = True
 self._todo_storage.save(item)

class DeleteTodo:

 def __init__(self, todo_storage: ITodoItemStorage):
 self._todo_storage = todo_storage

 def invoke(self, item_uuid: uuid.UUID):
 self._todo_storage.delete(item_uuid)

And that’s entire business logic of our simple TODO application. But so far,
we were only using a suite of unit tests, with ITodoItemStorage interface
mocked. Now, let’s put some life into our application.

Application’s API

To make our business logic running we cannot use mocks any longer - now we
need a real implementation of ITodoItemStorage interface. Since we are
still doing development of our application, we still don’t have to use any
SQL databases - just a simple in-memory store will do. Here’s a very basic
implementation:

class InMemoryTodoStorage(ITodoItemStorage):

 def __init__(self):
 self._todos = {}

 def create(self, item):
 self._todos[item.uuid] = item

 def save(self, item):
 self._todos[item.uuid] = item

 def delete(self, item_uuid):
 del self._todos[item_uuid]

 def get(self, item_uuid):
 return self._todos.get(item_uuid)

 def list(self):
 for item in self._todos.values():
 yield item

Now we can use it in our application. It will be represented by
TodoApplication class, with all use cases exposed as methods:

from typing import List

class TodoApplication:

 def __init__(self):
 self._todo_storage = InMemoryTodoStorage()

 def create(self, title: str, description: str):
 CreateTodo(self._todo_storage).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 CompleteTodo(self._todo_storage).invoke(item_uuid)

 def list(self) -> List[dict]:
 return [x for x in ListTodos(self._todo_storage).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 DeleteTodo(self._todo_storage).invoke(item_uuid)

And here’s how it works:

>>> app = TodoApplication()
>>> app.create('shopping', 'buy some milk')
>>> items = app.list()
>>> items
[{'uuid': ..., 'created': ..., 'title': 'shopping', 'description': 'buy some milk', 'done': False}]
>>> app.complete(items[0]['uuid'])
>>> app.list()
[{'uuid': ..., 'created': ..., 'title': 'shopping', 'description': 'buy some milk', 'done': True}]
>>> app.delete(items[0]['uuid'])
>>> app.list()
[]

Adding another environment

Okay, so we have our basic scenario working in development environment. But
to make it work in production, we need some non-volatile storage. Therefore,
we need another implementation. Let it be a some kind of SQL database:

import sqlite3

class SQLiteDatabase:

 def __init__(self, db_name):
 self._db_name = db_name

 def connect(self):
 connection = sqlite3.connect(self._db_name)
 c = connection.cursor()
 c.execute("""CREATE TABLE IF NOT EXISTS todos (
 uuid UUID PRIMARY KEY,
 created DATETIME,
 title TEXT,
 description TEXT,
 done BOOLEAN)""")
 connection.commit()
 return connection

class SQLiteTodoStorage(ITodoItemStorage):

 def __init__(self, connection):
 self._conn = connection

 def create(self, item):
 c = self._conn.cursor()
 c.execute(
 "INSERT INTO todos VALUES (?, ?, ?, ?, ?)",
 [str(item.uuid), item.created, item.title, item.description,
 item.done])

 def save(self, item):
 c = self._conn.cursor()
 c.execute("UPDATE todos SET done=?", [item.done]) # Just for our case
 self._conn.commit()

 def delete(self, item_uuid):
 c = self._conn.cursor()
 c.execute("DELETE FROM todos WHERE uuid=?", [str(item_uuid)])

 def get(self, item_uuid):
 c = self._conn.cursor()
 c.execute("SELECT * FROM todos WHERE uuid=?", [str(item_uuid)])
 row = c.fetchone()
 return self._make_todo(row)

 def list(self):
 c = self._conn.cursor()
 c.execute("SELECT * FROM todos")
 for row in c.fetchmany():
 yield self._make_todo(row)

 def _make_todo(self, row):
 item = TodoItem()
 item.uuid = row[0]
 item.created = row[1]
 item.title = row[2]
 item.description = row[3]
 item.done = True if row[4] else False
 return item

And now, let’s modify our original application. But this time, we need both
storages at once! We’ll decide which one to use by giving environment name to
TodoApplication’s constructor:

from typing import List

class TodoApplication:

 def __init__(self, env):
 if env == 'production':
 self._database = SQLiteDatabase(':memory:')
 self._todo_storage = SQLiteTodoStorage(self._database.connect())
 else:
 self._todo_storage = InMemoryTodoStorage()

 def create(self, title: str, description: str):
 CreateTodo(self._todo_storage).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 CompleteTodo(self._todo_storage).invoke(item_uuid)

 def list(self) -> List[dict]:
 return [x for x in ListTodos(self._todo_storage).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 DeleteTodo(self._todo_storage).invoke(item_uuid)

As you can see, the code gets more complicated. And this is only one
interface with just only two implementations! Let’s see how this works:

>>> app = TodoApplication('production')
>>> app.create('shopping', 'buy some milk')
>>> items = app.list()
>>> items
[{'uuid': ..., 'created': ..., 'title': 'shopping', 'description': 'buy some milk', 'done': False}]
>>> app.complete(items[0]['uuid'])
>>> app.list()
[{'uuid': ..., 'created': ..., 'title': 'shopping', 'description': 'buy some milk', 'done': True}]
>>> app.delete(items[0]['uuid'])
>>> app.list()
[]

Introducing providers

As you can see, when implementing additional storages, our business logic was
not affected at all, however configuration part of our application was
getting more complicated. Now let’s do some refactoring with PyDio.

First, we need to create providers. Providers are used to wrap
user-defined factory functions and give it a key that can be referenced
later. Here are providers for our two previously created storages:

from pydio.api import Provider

provider = Provider()

@provider.provides(ITodoItemStorage)
def make_in_memory_todo_storage(): # (1)
 return InMemoryTodoStorage()

@provider.provides(ITodoItemStorage, env='production')
def make_sqlite_todo_storage(): # (2)
 database = SQLiteDatabase(':memory:')
 return SQLiteTodoStorage(database.connect())

We have created two object factories with a key set in both to
ITodoItemStorage - our interface created earlier. Object factory (1) will
be used as a default for that key, while (2) will only be used for production
environment. Of course, environment names are not predefined - you can set it
to anything you like. The only requirement is to use same name later.

Introducing injectors

Now let me introduce second element of PyDio library - the injector.
Here’s our TODO application from earlier example refactored to use injector:

from pydio.api import Injector # (1)

class TodoApplication:

 def __init__(self, env):
 self._injector = Injector(provider, env=env) # (2)

 @property
 def _todo_storage(self):
 return self._injector.inject(ITodoItemStorage) # (3)

 def create(self, title: str, description: str):
 CreateTodo(self._todo_storage).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 CompleteTodo(self._todo_storage).invoke(item_uuid)

 def list(self) -> List[dict]:
 return [x for x in ListTodos(self._todo_storage).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 DeleteTodo(self._todo_storage).invoke(item_uuid)

And now a brief explanation:

	First, we need to import pydio.injector.Injector class (1)

	Now we have to create instance of that class. We need to pass
provider created earlier and environment given from the outside (2).
Our newly created injector will later use given provider and
environment to find matching factory.

	And finally (3), we use pydio.injector.Injector.inject() method to
perform injections. We use same key as previously in provider, and
environment passed in constructor will be used implicitly to find
matching variant of our factory.

As you can see, the code of our application is much simpler after
refactoring. Moreover, we can easily attach another implementation of our
storage - we just need to create another factory, and decorate it with same
key, but different environment. Here’s an example that uses mock this time:

from mockify.mock import ABCMock

@provider.provides(ITodoItemStorage, env='testing')
def make_storage_mock():
 return ABCMock('storage_mock', ITodoItemStorage)

And now, let’s run our unchanged application code, but giving it an
environment we’ve just used:

>>> app = TodoApplication('testing')
>>> app.create('shopping', 'buy some milk')
Traceback (most recent call last):
 ...
mockify.exc.UninterestedCall: No expectations recorded for mock:

at <doctest default[0]>:13

Called:
 storage_mock.create(<TodoItem object at ...>)

As you can see, our mock was now triggered - not in-memory, neither SQLite
storage.

Note

The call failed with exception, because we did not record any
expectations - that’s default behaviour for Mockify. Please proceed to
https://mockify.readthedocs.io/en/latest/ if you want to read more about
Mockify - my other project.

Using nested injections

Our example is rather trivial. In real life projects there are often much
more dependencies to be injected, and sometimes it is event necessary to
inject dependencies to the object that is being injected as well (nested
injections). To show how this works, let’s first extract our use case class
constructors out of the application and use provider to provide those as
well. Of course, our use cases will still need a storage, so we will have to
use nested injections:

provider = Provider()

@provider.provides(ITodoItemStorage)
def make_in_memory_todo_storage():
 return InMemoryTodoStorage()

@provider.provides(ITodoItemStorage, env='testing')
def make_storage_mock():
 return ABCMock('storage_mock', ITodoItemStorage)

@provider.provides(ITodoItemStorage, env='production')
def make_sqlite_todo_storage():
 database = SQLiteDatabase(':memory:')
 return SQLiteTodoStorage(database.connect())

@provider.provides(CreateTodo)
def make_create_todo(injector: Injector): # (1)
 return CreateTodo(injector.inject(ITodoItemStorage)) # (2)

@provider.provides(CompleteTodo)
def make_complete_todo(injector: Injector):
 return CompleteTodo(injector.inject(ITodoItemStorage))

@provider.provides(ListTodos)
def make_list_todos(injector: Injector):
 return ListTodos(injector.inject(ITodoItemStorage))

@provider.provides(DeleteTodo)
def make_delete_todos(injector: Injector):
 return DeleteTodo(injector.inject(ITodoItemStorage))

And now some explanation:

	First, we need to add argument for passing current injector to our
factory function. All supported arguments are:

	injector - for passing current injector (the one that owns that
object factory)

	key - for passing key assigned to that factory (CreateTodo in
this case)

	env - for passing environment name

These names are reserved currently, however the order may be changed -
you can pick from 0-3 arguments out of that predefined ones depending
on your needs. In other words, this works similarly to PyTest’s
fixtures.

	And finally (2), we use injector just like in our application class
earlier.

Okay, we have our provider configured, so let’s now rewrite our application
again. This time we’ll use injector to inject use case classes only:

class TodoApplication:

 def __init__(self, env):
 self._injector = Injector(provider, env=env)

 def create(self, title: str, description: str):
 self._injector.inject(CreateTodo).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 self._injector.inject(CompleteTodo).invoke(item_uuid)

 def list(self) -> List[dict]:
 return [x for x in self._injector.inject(ListTodos).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 self._injector.inject(DeleteTodo).invoke(item_uuid)

Using scopes

The solution we’ve prepared so far would not work in real situations unless
we create different application object for every action. That is due to the
fact, that each object factory is called only once per injector’s
lifetime. And since we create injector in application’s constructor, we would
have to call it (the constructor) again for every method call - otherwise we
would start sharing our objects between API calls, and that may not be
expected behavior.

To solve this issue, PyDio provides scopes. Scopes are implemented by
creating new injector from given one, and giving the new one access to
user-defined scope, plus its ancestors. Such created injectors can have
shorter lifetime than the root one.

But we also need to set scopes when factory functions are registered to
provider - just like we did for environments:

provider = Provider()

@provider.provides(ITodoItemStorage, scope='app')
def make_in_memory_todo_storage():
 return InMemoryTodoStorage()

@provider.provides(ITodoItemStorage, env='testing', scope='app')
def make_storage_mock():
 return ABCMock('storage_mock', ITodoItemStorage)

@provider.provides(ITodoItemStorage, env='production', scope='app')
def make_sqlite_todo_storage():
 database = SQLiteDatabase(':memory:')
 return SQLiteTodoStorage(database.connect())

@provider.provides(CreateTodo, scope='action')
def make_create_todo(injector: Injector):
 return CreateTodo(injector.inject(ITodoItemStorage))

@provider.provides(CompleteTodo, scope='action')
def make_complete_todo(injector: Injector):
 return CompleteTodo(injector.inject(ITodoItemStorage))

@provider.provides(ListTodos, scope='action')
def make_list_todos(injector: Injector):
 return ListTodos(injector.inject(ITodoItemStorage))

@provider.provides(DeleteTodo, scope='action')
def make_delete_todos(injector: Injector):
 return DeleteTodo(injector.inject(ITodoItemStorage))

We’ve registered our factories using two scopes: app and action. Now,
let’s change our application class to something like this:

injector = Injector(provider) # (1)

class TodoApplication:

 def __init__(self, env):
 self._injector = injector.scoped('app', env=env) # (2)

 def create(self, title: str, description: str):
 with self._injector.scoped('action') as injector: # (3)
 injector.inject(CreateTodo).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 with self._injector.scoped('action') as injector:
 injector.inject(CompleteTodo).invoke(item_uuid)

 def list(self) -> List[dict]:
 with self._injector.scoped('action') as injector:
 return [x for x in injector.inject(ListTodos).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 with self._injector.scoped('action') as injector:
 injector.inject(DeleteTodo).invoke(item_uuid)

 def shutdown(self):
 self._injector.close()

And now some explanation:

	We’ve created a root injector at (1)

	Then, in our application, we’ve created a scoped injector from our
root and named it app - it will be application-wide. This injector
will be able to use object factories:

	that does not have scope assigned,

	that has app scope assigned.

All other will not be accessible from there.

	Finally, in our actions we’ve created another scoped injector, from our
application’s one, and named it with a scope action (3). This injector
will be able to use object factories:

	that does not have scope assigned,

	that have app scope assigned (as it is a child of app scoped injector),

	that have action scope assigned.

And - like previously - all other will not be accessible.

	The lifetime of each injector is:

	Same as for process (root injector)

	Until shutdown() is called (app injector)

	Until we are under context manager (each action injector)

Using generator-based object factories

We are still missing one important thing in our application - database
sessions. Of course, that is not needed for a in-memory storage, but
definitely will have to be used for SQL-based storage. And the session scope
should be limited only to actions. How to do that using PyDio? Here’s a
solution:

provider = Provider()

@provider.provides('database', env='production', scope='app') # (1)
def make_database():
 return SQLiteDatabase(':memory:').connect()

@provider.provides(ITodoItemStorage, env='production', scope='action')
def make_sqlite_todo_storage(injector):
 connection = injector.inject('database') # (2)
 try:
 yield SQLiteTodoStorage(connection) # (3)
 except Exception:
 connection.close()
 else:
 connection.commit()

This time, we’ve extracted making database to a separate factory function (1)
and changed the scope for make_sqlite_todo_storage function to action.
Notice, that the scope of make_database function is still set to app,
so database object will be bound to app injector and reused by all action
injectors. There is one more important thing: we’ve used a generator in
(3). Thanks to this, we were able to customize cleanup behavior for that
particular factory to either do a commit, or a rollback - in similar way as
in PyTest fixtures.

That will work with unchanged application code from previous example.

Using multiple providers

Sometimes single provider object may not be good enough. Especially, when
there are dozens of object factory functions to be registered, possible in
several separate modules. For example, based on our application, different
module for storages and different for use cases may be needed at some point
in time. So now let’s rewrite our application to use two different provider
objects.

We’ll start by creating module for our storage provider. It will look like
this:

from pydio.api import Provider

storage_provider = Provider()

@storage_provider.provides(ITodoItemStorage, scope='app')
def make_in_memory_todo_storage():
 return InMemoryTodoStorage()

@storage_provider.provides(ITodoItemStorage, env='testing', scope='app')
def make_storage_mock():
 return ABCMock('storage_mock', ITodoItemStorage)

@storage_provider.provides('database', env='production', scope='app')
def make_database():
 return SQLiteDatabase(':memory:').connect()

@storage_provider.provides(ITodoItemStorage, env='production', scope='action')
def make_sqlite_todo_storage(injector):
 connection = injector.inject('database') # (2)
 try:
 yield SQLiteTodoStorage(connection) # (3)
 except Exception:
 connection.close()
 else:
 connection.commit()

And now, let’s make separate module for our use case provider:

from pydio.api import Provider

use_case_provider = Provider()

@use_case_provider.provides(CreateTodo, scope='action')
def make_create_todo(injector: Injector):
 return CreateTodo(injector.inject(ITodoItemStorage))

@use_case_provider.provides(CompleteTodo, scope='action')
def make_complete_todo(injector: Injector):
 return CompleteTodo(injector.inject(ITodoItemStorage))

@use_case_provider.provides(ListTodos, scope='action')
def make_list_todos(injector: Injector):
 return ListTodos(injector.inject(ITodoItemStorage))

@use_case_provider.provides(DeleteTodo, scope='action')
def make_delete_todos(injector: Injector):
 return DeleteTodo(injector.inject(ITodoItemStorage))

To make a use of those two distinct providers we just need to create yet
another provider and attach previously created two providers to it using
pydio.provider.Provider.attach() method:

provider = Provider()
provider.attach(storage_provider)
provider.attach(use_case_provider)

injector = Injector(provider)

class TodoApplication:

 def __init__(self, env):
 self._injector = injector.scoped('app', env=env)

 def create(self, title: str, description: str):
 with self._injector.scoped('action') as injector:
 injector.inject(CreateTodo).invoke(title, description)

 def complete(self, item_uuid: uuid.UUID):
 with self._injector.scoped('action') as injector:
 injector.inject(CompleteTodo).invoke(item_uuid)

 def list(self) -> List[dict]:
 with self._injector.scoped('action') as injector:
 return [x for x in injector.inject(ListTodos).invoke()]

 def delete(self, item_uuid: uuid.UUID):
 with self._injector.scoped('action') as injector:
 injector.inject(DeleteTodo).invoke(item_uuid)

 def shutdown(self):
 self._injector.close()

API Reference

	pydio.api - All core classes in one place
	Injector
	Injector.AlreadyClosedError

	Injector.NoProviderFoundError

	Injector.OutOfScopeError

	Injector.close()

	Injector.env

	Injector.inject()

	Injector.is_closed()

	Injector.scoped()

	Provider
	Provider.DoubleRegistrationError

	Provider.attach()

	Provider.get()

	Provider.has_awaitables()

	Provider.provides()

	Provider.register_func()

	Provider.register_instance()

	Variant
	Variant.key

	Variant.kwargs

	pydio.base - Interface definitions
	IFactory
	IFactory.close()

	IFactory.get_instance()

	IInjector
	IInjector.close()

	IInjector.inject()

	IInjector.scoped()

	IUnboundFactory
	IUnboundFactory.bind()

	IUnboundFactory.is_awaitable()

	IUnboundFactory.scope

	IUnboundFactoryRegistry
	IUnboundFactoryRegistry.get()

	IUnboundFactoryRegistry.has_awaitables()

	pydio.exc - Base exceptions
	Base
	Base.message_template

	Base.params

	InjectorError

	ProviderError

	pydio.injector - Dependency injector
	Injector
	Injector.AlreadyClosedError

	Injector.NoProviderFoundError

	Injector.OutOfScopeError

	Injector.close()

	Injector.env

	Injector.inject()

	Injector.is_closed()

	Injector.scoped()

	pydio.keys - Key wrappers for special purposes
	Variant
	Variant.key

	Variant.kwargs

	pydio.provider - Object factory provider
	Provider
	Provider.DoubleRegistrationError

	Provider.attach()

	Provider.get()

	Provider.has_awaitables()

	Provider.provides()

	Provider.register_func()

	Provider.register_instance()

pydio.api - All core classes in one place

An all-in-one module for making imports easier.

You can use this in your code to create one-line imports. For example,
instead of adding multiple PyDio imports to your application, you can do
this instead:

from pydio.api import Injector, Provider

	
class pydio.api.Injector(provider: IUnboundFactoryRegistry, env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None)

	Dependency injector main class.

	Parameters

	
	provider – Unbound factory provider to work on

	env – Name of the environment this injector will use when making queries to
IUnboundFactoryRegistry object given via provider.

This can be obtained f.e. from environment variable. Once injector is
created you will not be able to change this.

See IUnboundFactoryRegistry.get() for more details.

	
exception AlreadyClosedError(**kwargs)

	Raised when operation on a closed injector was performed.

	
exception NoProviderFoundError(key, env)

	Raised when there was no matching provider found for given key.

	Parameters

	
	key – Searched key

	env – Searched environment

	
exception OutOfScopeError(key, scope, required_scope)

	Raised when there was attempt to create object that was registered
for different scope.

	Parameters

	
	key – Searched key

	scope – Injector’s own scope

	required_scope – Required scope

	
close() → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None [https://docs.python.org/3/library/constants.html#None]]]

	See pydio.base.IInjector.close().

	
property env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]]

	Environment assigned to this injector.

	
inject(key)

	See IInjector.inject.

	
is_closed() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if this injector was closed or False otherwise.

	
scoped(scope: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None) → IInjector

	See pydio.base.IInjector.scoped().

	
class pydio.api.Provider

	Used to record user-defined object factories or instances and bind
them with particular key, that can later be used by
IInjector.inject().

	
exception DoubleRegistrationError(key, env)

	Raised when same (key, env) tuple was used twice during
registration.

	Parameters

	
	key – Registered key

	env – Registered environment

	
attach(provider: Provider)

	Attach given provider to this provider.

This effectively extends current provider with object factories
registered to the other one.

Use this if you need to split your providers across multiple modules.

	
get(key, env=None)

	See IUnboundFactoryRegistry.get().

	
has_awaitables()

	See IUnboundFactoryRegistry.has_awaitables().

	
provides(key, scope=None, env=None)

	Same as register_func(), but to be used as a decorator.

Here’s an example:

from pydio.api import Provider

provider = Provider()

@provider.provides('spam')
def make_spam():
 return 'give me more spam'

	
register_func(key, func, scope=None, env=None)

	Register user factory function.

	Parameters

	
	key – Key to be used for func.

See IInjector.inject() for more info.

	func – User-defined function to be registered.

This can be normal function, coroutine, generator or async
denerator.

	scope – Optional scope to be assigned.

	env – Optional environment to be assigned

	
register_instance(key, value, scope=None, env=None)

	Same as register_func(), but for registration of constant
objects.

If your application has some global configuration data you want to
inject using PyDio - that’s the method you should use.

	
class pydio.api.Variant(key: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], **kwargs: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable])

	A special form of key that can have user-defined parameters attached.

This class can be used if you need to use same key twice, but return
different objects depending on additional parameters given (which can be
accessed by object factory)

	Parameters

	
	key – The key to be wrapped

	kwargs – Additional parameters to be bound with given key

	
property key

	Wrapped key.

	
property kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Dict with parameters given in constructor.

pydio.base - Interface definitions

Interface definitions.

	
class pydio.base.IFactory

	Interface for bound factories.

Bound factories are managed by IInjector objects and are
responsible for construction of target object that is later returned by
IInjector.inject(). Each factory should wrap one kind of object
factory function provided by user (f.e. normal function or a coroutine,
but never both).

	
abstract close()

	Close this factory.

When called, underlying instance is cleared and calling
get_instance() again will return None. This method may also
invoke some additional custom-defined clearing actions (if supported
by implementation).

	
abstract get_instance() → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][T, Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][T]]]

	Create and return target object.

Value returned by this method is later also returned by
IInjector.inject() method.

	
class pydio.base.IInjector

	Definition of injector interface.

	
abstract close() → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None [https://docs.python.org/3/library/constants.html#None]]]

	Close this injector.

Closing injector invalidates injector and makes it unusable.

It also cleans up internal cache by calling IFactory.close()
for each factory being in use by this injector. If this injector has
children injectors (created by calling scoped() method) then
those are closed as well (recursively).

	
abstract inject(key: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]) → Union [https://docs.python.org/3/library/typing.html#typing.Union][T, Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][T]]

	Create and return object for given hashable key.

On success, this method returns created object or awaitable pointing
to created object. On failure, it raises
pydio.exc.InjectorError.

	Parameters

	key – Identifier of underlying object factory to be used.

This can be either class object (f.e. base class or interface), a
hashable (f.e. string or a number), or a special key wrapper from
pydio.keys.

Please be aware that same key has to be used in provider during
registration of object factory.

	
abstract scoped(scope: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None) → IInjector

	Create scoped injector that is a child of current one.

Scoped injectors can only operate on
pydio.base.IUnboundFactory objects with
pydio.base.IUnboundFactory.scope attribute being equal to
given scope.

	Parameters

	
	scope – User-defined scope name.

	env – User-defined environment name for newly created injector and all
its descendants.

This option is applicable only if none of the ancestors of newly
created injector has environment set. Otherwise, setting this will
cause ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception.

	
class pydio.base.IUnboundFactory

	Interface for unbound factories.

Unbound factories are created and managed by
IUnboundFactoryRegistry objects. The role of this class is to
wrap user-specified factory functions that are being registered to
providers.

	
abstract bind(injector: IInjector) → IFactory

	Create IFactory object to be owned by given injector.

	Parameters

	injector – The owner of bound factory object to be created

	
abstract is_awaitable() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if this factory produces awaitable IFactory
instances or False otherwise.

	
abstract property scope: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]]

	Name of the scope assigned to this factory.

Factories with scopes defined can only be used by injectors with same
scope set.

	
class pydio.base.IUnboundFactoryRegistry

	Interface for IUnboundFactory objects registry.

Factory registries are used by IInjector objects to find
IUnboundFactory object that matches key that was given to
IInjector.inject() call.

	
abstract get(key: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][IUnboundFactory]

	Get IUnboundFactory registered for given key and
environment (if given).

If no factory was found, then return None.

	Parameters

	
	key – See IInjector.inject()

	env – Environment name.

Same key can be reused by multiple environments, but none can
have that key duplicated. This is used to provide several
different implementations of one key that depend on environment
on which application is executed (f.e. different database may be
needed in testing, and different in production)

	
abstract has_awaitables() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if this factory registry contains awaitable factories
or False otherwise.

Behind the scenes, this will check if there is at least one unbound
factory for which IUnboundFactory.is_awaitable() returns True.

pydio.exc - Base exceptions

Base exception classes for PyDio.

	
exception pydio.exc.Base(**kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception], ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Common base class for all PyDio exceptions.

You can use this class to catch all exceptions that this library may
raise.

	
abstract property message_template: str [https://docs.python.org/3/library/stdtypes.html#str]

	Specify message template.

This must be defined in subclass and provides template to render
exception message. This template can use self to access exception
data, for example:

class MyException(Base):
 message_template = 'Failed: foo={self.foo!r}'

	
property params: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Dictionary containing all keyword args given in constructor.

In subclass, this can be used as source of data when adding another
properties.

	
exception pydio.exc.InjectorError(**kwargs)

	Bases: Base

Base class for exceptions that can be raised by
pydio.base.IInjector instances.

	
exception pydio.exc.ProviderError(**kwargs)

	Bases: Base

Base class for exceptions that can be raised by
pydio.base.IUnboundFactoryRegistry instances.

pydio.injector - Dependency injector

	
class pydio.injector.Injector(provider: IUnboundFactoryRegistry, env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None)

	Bases: IInjector

Dependency injector main class.

	Parameters

	
	provider – Unbound factory provider to work on

	env – Name of the environment this injector will use when making queries to
IUnboundFactoryRegistry object given via provider.

This can be obtained f.e. from environment variable. Once injector is
created you will not be able to change this.

See IUnboundFactoryRegistry.get() for more details.

	
exception AlreadyClosedError(**kwargs)

	Bases: InjectorError

Raised when operation on a closed injector was performed.

	
exception NoProviderFoundError(key, env)

	Bases: InjectorError

Raised when there was no matching provider found for given key.

	Parameters

	
	key – Searched key

	env – Searched environment

	
exception OutOfScopeError(key, scope, required_scope)

	Bases: InjectorError

Raised when there was attempt to create object that was registered
for different scope.

	Parameters

	
	key – Searched key

	scope – Injector’s own scope

	required_scope – Required scope

	
close() → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None [https://docs.python.org/3/library/constants.html#None]]]

	See pydio.base.IInjector.close().

	
property env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]]

	Environment assigned to this injector.

	
inject(key)

	See IInjector.inject.

	
is_closed() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if this injector was closed or False otherwise.

	
scoped(scope: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], env: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]] = None) → IInjector

	See pydio.base.IInjector.scoped().

pydio.keys - Key wrappers for special purposes

	
class pydio.keys.Variant(key: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable], **kwargs: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable])

	Bases: Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]

A special form of key that can have user-defined parameters attached.

This class can be used if you need to use same key twice, but return
different objects depending on additional parameters given (which can be
accessed by object factory)

	Parameters

	
	key – The key to be wrapped

	kwargs – Additional parameters to be bound with given key

	
property key

	Wrapped key.

	
property kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Dict with parameters given in constructor.

pydio.provider - Object factory provider

	
class pydio.provider.Provider

	Bases: IUnboundFactoryRegistry

Used to record user-defined object factories or instances and bind
them with particular key, that can later be used by
IInjector.inject().

	
exception DoubleRegistrationError(key, env)

	Bases: ProviderError

Raised when same (key, env) tuple was used twice during
registration.

	Parameters

	
	key – Registered key

	env – Registered environment

	
attach(provider: Provider)

	Attach given provider to this provider.

This effectively extends current provider with object factories
registered to the other one.

Use this if you need to split your providers across multiple modules.

	
get(key, env=None)

	See IUnboundFactoryRegistry.get().

	
has_awaitables()

	See IUnboundFactoryRegistry.has_awaitables().

	
provides(key, scope=None, env=None)

	Same as register_func(), but to be used as a decorator.

Here’s an example:

from pydio.api import Provider

provider = Provider()

@provider.provides('spam')
def make_spam():
 return 'give me more spam'

	
register_func(key, func, scope=None, env=None)

	Register user factory function.

	Parameters

	
	key – Key to be used for func.

See IInjector.inject() for more info.

	func – User-defined function to be registered.

This can be normal function, coroutine, generator or async
denerator.

	scope – Optional scope to be assigned.

	env – Optional environment to be assigned

	
register_instance(key, value, scope=None, env=None)

	Same as register_func(), but for registration of constant
objects.

If your application has some global configuration data you want to
inject using PyDio - that’s the method you should use.

Changelog

0.1.0 (2021-02-15)

Added

	Add quickstart tutorial to documentation

	Add env parameter to pydio.injector.Injector.scoped() method

	Add locks to make pydio.injector.Injector and
pydio.provider.Provider thread-safe

Changed

	Part of pydio.injector.Injector interface made abstract in
pydio.base.IInjector

Other

	Small cleanup in pydio.base module regarding annotations

0.1.0rc4 (2021-02-10)

Added

	Add missing support for async context manager in
pydio.injector.Injector class

	Add initial documentation draft with API docs

	Add some badges to the project

Changed

	Improved README.rst file with simple example

	Redesigned pydio.base module

	Module renamed: pydio.variant -> pydio.keys

0.1.0rc3 (2021-02-04)

	Fix in scripts and pipeline

	Update README.rst

0.1.0rc2 (2021-02-04)

	Add CHANGELOG.rst file

	Add missing __version__ attribute to pydio.__init__.py

	Fix pipeline issue about missing version info

	Some other minor release fixes

0.1.0rc1 (2021-02-04)

	First released tag

License

Copyright (C) 2021 Maciej Wiatrzyk <maciej.wiatrzyk@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pydio	

 	
 	
 pydio.api	

 	
 	
 pydio.base	

 	
 	
 pydio.exc	

 	
 	
 pydio.injector	

 	
 	
 pydio.keys	

 	
 	
 pydio.provider	

Index

 A
 | B
 | C
 | E
 | G
 | H
 | I
 | K
 | M
 | P
 | R
 | S
 | V

A

 	
 	attach() (pydio.api.Provider method)

 	(pydio.provider.Provider method)

B

 	
 	Base

 	
 	bind() (pydio.base.IUnboundFactory method)

C

 	
 	close() (pydio.api.Injector method)

 	(pydio.base.IFactory method)

 	(pydio.base.IInjector method)

 	(pydio.injector.Injector method)

E

 	
 	env (pydio.api.Injector property)

 	(pydio.injector.Injector property)

G

 	
 	get() (pydio.api.Provider method)

 	(pydio.base.IUnboundFactoryRegistry method)

 	(pydio.provider.Provider method)

 	
 	get_instance() (pydio.base.IFactory method)

H

 	
 	has_awaitables() (pydio.api.Provider method)

 	(pydio.base.IUnboundFactoryRegistry method)

 	(pydio.provider.Provider method)

I

 	
 	IFactory (class in pydio.base)

 	IInjector (class in pydio.base)

 	inject() (pydio.api.Injector method)

 	(pydio.base.IInjector method)

 	(pydio.injector.Injector method)

 	Injector (class in pydio.api)

 	(class in pydio.injector)

 	Injector.AlreadyClosedError, [1]

 	
 	Injector.NoProviderFoundError, [1]

 	Injector.OutOfScopeError, [1]

 	InjectorError

 	is_awaitable() (pydio.base.IUnboundFactory method)

 	is_closed() (pydio.api.Injector method)

 	(pydio.injector.Injector method)

 	IUnboundFactory (class in pydio.base)

 	IUnboundFactoryRegistry (class in pydio.base)

K

 	
 	key (pydio.api.Variant property)

 	(pydio.keys.Variant property)

 	
 	kwargs (pydio.api.Variant property)

 	(pydio.keys.Variant property)

M

 	
 	message_template (pydio.exc.Base property)

 	
 module

 	pydio.api

 	pydio.base

 	pydio.exc

 	pydio.injector

 	pydio.keys

 	pydio.provider

P

 	
 	params (pydio.exc.Base property)

 	Provider (class in pydio.api)

 	(class in pydio.provider)

 	Provider.DoubleRegistrationError, [1]

 	ProviderError

 	provides() (pydio.api.Provider method)

 	(pydio.provider.Provider method)

 	
 pydio.api

 	module

 	
 	
 pydio.base

 	module

 	
 pydio.exc

 	module

 	
 pydio.injector

 	module

 	
 pydio.keys

 	module

 	
 pydio.provider

 	module

R

 	
 	register_func() (pydio.api.Provider method)

 	(pydio.provider.Provider method)

 	
 	register_instance() (pydio.api.Provider method)

 	(pydio.provider.Provider method)

S

 	
 	scope (pydio.base.IUnboundFactory property)

 	scoped() (pydio.api.Injector method)

 	(pydio.base.IInjector method)

 	(pydio.injector.Injector method)

V

 	
 	Variant (class in pydio.api)

 	(class in pydio.keys)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyDio’s documentation!

 		
 Installation

 		
 Quickstart

 		
 Introduction

 		
 Application’s business logic

 		
 Application’s API

 		
 Adding another environment

 		
 Introducing providers

 		
 Introducing injectors

 		
 Using nested injections

 		
 Using scopes

 		
 Using generator-based object factories

 		
 Using multiple providers

 		
 API Reference

 		
 pydio.api - All core classes in one place

 		
 Injector

 		
 Provider

 		
 Variant

 		
 pydio.base - Interface definitions

 		
 IFactory

 		
 IInjector

 		
 IUnboundFactory

 		
 IUnboundFactoryRegistry

 		
 pydio.exc - Base exceptions

 		
 Base

 		
 InjectorError

 		
 ProviderError

 		
 pydio.injector - Dependency injector

 		
 Injector

 		
 pydio.keys - Key wrappers for special purposes

 		
 Variant

 		
 pydio.provider - Object factory provider

 		
 Provider

 		
 Changelog

 		
 0.1.0 (2021-02-15)

 		
 0.1.0rc4 (2021-02-10)

 		
 0.1.0rc3 (2021-02-04)

 		
 0.1.0rc2 (2021-02-04)

 		
 0.1.0rc1 (2021-02-04)

 		
 License

